Notifiche
Cancella tutti

[Risolto] funzione composta  

  

0

Considera le funzioni $f(x)= \sqrt{x}+3$ e $g(x)=lnx+1$, determina $h(x)=f \circ g \neq  g\circ f $.

Calcola poi $ f \circ f^{-1} $ e $ (f \circ g)^{-1} $

Cattura

grazie.

@antonio scusami ma il testo trascritto non coincide con quello della foto... dove troviamo una funzione logaritmica...

@Cenerentola, scusa ma ho sbagliato a trascrivere. ora correggo. 

@antonio👍

2 Risposte
3

Quando si fa una funzione composta praticamente si prende una funzione e la si mette al posto della x di un'altra funzione.

Dire f•g equivale a dire f(g(x)), ovvero "al posto delle x di f(x) bisogna scrivere g(x)"

Avendo f(x)=√x+3 e g(x)=lnx+1 otteniamo:

f•g=√(lnx+1) +2

g•f= ln(√x +2) +1

Si vede subito che f•g≠g•f

--------------------------------------------------

La seconda parte del problema chiede di trovare f•f^-1

Ti faccio notare che stai facendo la composta tra una funzione e la sua inversa, quindi il risultato è per forza x

Per farti un esempio, è come se facessi sin(arcsinx) oppure √x² , cioè unisci due funzioni che sono una l'inverso dell'altra

Per trovare invece (f•g)^-1 bisogna scrivere la funzione f•g come  y=√(lnx+1) +2

Ora bisogna ricavare la x:

(y-2)²=lnx+1

lnx=y² +3 -4y

x=e^(y² +3 -4y)

Per ricavare l'inversa devi ora scambiare la x con la y:

(f•g)^-1 = e^(x²-4x+3)

@andreap Non sono d'accordo, a meno che l'eguaglianza non sia più una relazione riflessiva o non si tratti più di x reale: se è vero che «(√x)^2 = x», io so che è anche vero che «|x| = √(x^2)» per x reale. Com'è che commutando i membri il modulo si dovrebbe perdere?

1

* f(x) = √x + 3
* g(x) = ln(x) + 1 = ln(e*x)
* f ◦ g = √(ln(e*x)) + 3
* g ◦ f = ln(e*(√x + 3))
---------------
VERIFICA
* √(ln(e*x)) + 3 = ln(e*(√x + 3))
non è un'identità, ma un'equazione [unica radice x ~= 52167.5]
* √(ln(e*52167.5)) + 3 ~= 6.444156641996345
* ln(e*(√52167.5 + 3)) ~= 6.444156707477491
http://www.wolframalpha.com/input/?i=plot%5By%3D%E2%88%9A%28ln%28e*x%29%29%2B3%2Cy%3Dln%28e*%28%E2%88%9Ax%2B3%29%29%5Dx%3D0to80000
---------------
FUNZIONI INVERSE
* f(x) = y = √x + 3 ≡ x = (y - 3)^2
* f ◦ g = y = √(ln(e*x)) + 3 ≡ x = e^(y^2 - 6*y + 8)
* inv[f] = y = (x - 3)^2
* inv[f ◦ g] = y = e^(x^2 - 6*x + 8)
* f ◦ inv[f] = √((x - 3)^2) + 3 = |x - 3| + 3 != x
NB: il risultato atteso è ROTONDAMENTE ERRATO: la radice quadrata di un quadrato NON E' LA BASE del radicando, MA IL SUO MODULO.

 +10

Iscriviti su SosMatematica.it e ricevi 10 gemme oggi stesso.

SOS Matematica

GRATIS
Download