Notifiche
Cancella tutti

Disequazioni Logaritmiche

  

0
Screenshot (48) copia

Non capisco (log3 ^x)^2-1>0

Autore
3 Risposte
4

Insieme di definizione in R: x>0

 

Il sistema è equivalente a:

{x+9 <= 9*(x+1)

{ log (3,x) < - 1  v log(3,x) > 1

 

Dalla prima si ricava:

x>0

 

Dalla seconda:

log (3,x) < log(3, 1/3)  v  log(3,x) > log(3,3)  => x < 1/3  v  x>3

 

Dall'intersezione delle due condizioni 

{x>0

{x< 1/3  v  x>3

 

si trova la soluzione: S={0  < x < 1/3  v  x> 3}

@stefanopescetto Grazie mille!!




1

Mi pare strano che tu, arrivata a studiare i logaritmi, dica "non capisco" di un prodotto notevole del tipo differenza di quadrati; però può succedere, ogni tanto capita a tutti.
---------------
Mentre l'eguaglianza della prima disequazione richiede la sola condizione "argomenti non nulli" le due diseguaglianze d'ordine richiedono la più stringente condizione "argomenti positivi", cioè
* (x + 9 > 0) & (x + 1 > 0) & (x > 0) ≡ (x > 0)
con la quale filtrare l'ammissibilità del risultato dello svolgimento.
---------------
* (log(3, x + 9) <= log(3, x + 1) + 2) & ((log(3, x))^2 - 1 > 0) ≡
≡ (log(3, x + 9) <= log(3, x + 1) + log(3, 9)) & ((log(3, x) + 1)*(log(3, x) - 1) > 0) ≡
≡ (log(3, x + 9) <= log(3, 9*(x + 1))) & ((log(3, x) < - 1) oppure (log(3, x) > 1)) ≡
≡ (log(3, 9*(x + 1)/(x + 9)) >= 0) & ((3^log(3, x) < 3^(- 1)) oppure (3^log(3, x) > 3^1)) ≡
≡ (3^log(3, 9*(x + 1)/(x + 9)) >= 3^0) & ((x < 1/3) oppure (x > 3)) ≡
≡ (9*(x + 1)/(x + 9) >= 1) & ((x < 1/3) oppure (x > 3)) ≡
≡ (9*(x + 1)/(x + 9) - 1 >= 0) & ((x < 1/3) oppure (x > 3)) ≡
≡ (8*x/(x + 9) >= 0) & ((x < 1/3) oppure (x > 3)) ≡
≡ ((x < - 9) oppure (x >= 0)) & ((x < 1/3) oppure (x > 3)) ≡
≡ (x < - 9) & ((x < 1/3) oppure (x > 3)) oppure (x >= 0) & ((x < 1/3) oppure (x > 3)) ≡
≡ (x < - 9) & (x < 1/3) oppure (x < - 9) & (x > 3) oppure (x >= 0) & (x < 1/3) oppure (x >= 0) & (x > 3) ≡
≡ (x < - 9) oppure (insieme vuoto) oppure (0 <= x < 1/3) oppure (x > 3) ≡
≡ (x < - 9) oppure (0 <= x < 1/3) oppure (x > 3)
---------------
CONCLUSIONE
* ((x < - 9) oppure (0 <= x < 1/3) oppure (x > 3)) & (x > 0) ≡
≡ (0 < x < 1/3) oppure (x > 3)
che è proprio il risultato atteso.

 

0

log(3^2x)>1 

2x*log 3 > log 1 




Risposta



About SosMatematica

Seguici su:

Scarica la nostra App Ufficiale

SOS Matematica

GRATIS
VISUALIZZA