Notifiche
Cancella tutti

[Risolto] Problema

  

-1

Risolvi graficamente le seguenti disequazioni irrazionali. Per favore è urgente?

Radquadrt4x-x^2 minoreuguale 2radquadr3-x

Autore
3 Risposte
2

x Lulù.

Ho rivisto la soluzione dopo la segnalazione di Sebastiano.

 

Grazie Sebastiano, in effetti c'è un 2 che mi era sfuggito.

 

√(4x-x²) ≤ 2√(3-x)

Vediamo dove è definita

1. CE

  • √(4x-x²) ⇒ 4x-x² ≥ 0 ⇒ 0 ≤ x ≤ 4
  • √(3-x) ⇒ 3-x ≥ 0 ⇒ x ≤ 3

CE = [0,3] ovvero  0 ≤ x ≤ 3

 

2. Soluzione

Quadriamo ambo i membri

4x-x² ≤ 4(3-x)

x²-8x+12 ≥ 0

Le due radici del trinomio sono x = 2 V x = 6

quindi l'insieme delle soluzioni della disequazione  è 4x-x² ≤ 4(3-x) è

x ≤ 2 V x ≥ 6

 

L'insieme delle soluzioni che risolve la disequazione è dato dall'intersezione delle soluzioni precedenti con il CE. Cioè

0 ≤ x ≤ 2 

 

 

 

 

2

Che scrittura oscena!! Impara a mettere le parentesi!

@cmc nonostante l'autrice del post non sia in grado di esprimersi, mi pare che a destra della disuguaglianza ci sia un 2 che moltiplica la radice quadrata. Quindi forse la soluzione va rivista 😉 😉 

0

NON E' AFFATTO VERO, NELLA RICHIESTA NON C'E' ALCUNA URGENZA.
Se l'urgenza è della tua psiche, ciò non dà alcuna informazione utile a risolvere il problema di calcolare dove il grafico di
* y = √(4*x - x^2)
non sovrasti quello di
* y = 2*√(3 - x)
A proposito: se non hai la pazienza di fare Copia/Incolla da charMap.exe sul carattere UTF8 dell'operatore prefisso "√" puoi usare la notazione funzionale col nome internazionale della funzione: sqrt.
Calcolare dove la semiparabola
* y = 2*sqrt(3 - x)
non soggiace a quello della semicirconferenza
* y = sqrt(4*x - x^2)
------------------------------
RISOLUZIONE GRAFICA
---------------
La semiparabola
* y = 2*sqrt(3 - x)
ha
* vertice V(3, 0)
* asse x come asse di simmetria
* concavità rivolta verso x < 0
* intercetta nel punto Y(0, 2*√3 ~= 3.46)
---------------
La semicirconferenza
* y = sqrt(4*x - x^2)
ha
* centro C(2, 0)
* culmine M(2, 2)
---------------
Tracciando i due grafici con la stessa scala nello stesso riferimento è agevole individuare le eventuali intersezioni e, variando la scala, stimarne le ascisse con la precisione desiderata.
Basta questo solo disegno
http://www.wolframalpha.com/input/?i=%5By%3D%E2%88%9A%284*x-x%5E2%29%2Cy%3D2*%E2%88%9A%283-x%29%5Dx%3D0to4
per stimare l'ascissa x = 2.

 

Scarica la nostra App Ufficiale

SOS Matematica

GRATIS
VISUALIZZA